Controlling Macroscopic Friction through Interfacial Siloxane Bonding
Controlling macroscopic friction is crucial for numerous natural and industrial applications, ranging from forecasting earthquakes to miniaturizing semiconductor devices, but predicting and manipulating friction phenomena remains a challenge due to the unknown relationship between nanoscale and macroscopic friction. Here, we show experimentally that dry friction at multiasperity Si-on-Si interfaces is dominated by the formation of interfacial siloxane (Si─O─Si) bonds, the density of which can be precisely regulated by exposing plasma-cleaned silicon surfaces to dry nitrogen. Our results show how the bond density can be used to quantitatively understand and control the macroscopic friction. Our findings establish a unique connection between the molecular scale at which adhesion occurs, and the friction coefficient that is the key macroscopic parameter for industrial and natural tribology challenges.