Computational-imaging-based optical coherence tomography in time- and frequency-domain
A computational 3D imaging system is developed that enables polychromatic, depth-resolved, diffraction-limited imaging of semi-transparent objects. By combining coherent diffractive imaging (CDI) and optical coherence tomography (OCT), we reconstruct tomographic images of 3D objects from a set of wavelength- and phase-resolved diffraction patterns, using numerical methods to achieve image quality beyond the hardware limits of the optical systems used. We implement both time- and frequency-domain versions of full-field OCT systems, and for both versions we demonstrate fully lensless, as well as high-numerical-aperture configurations. We provide a comparison and overview of these different practical approaches to depth-resolved computational imaging. Furthermore, we demonstrate depth-resolved imaging of multilayer samples with an isotropic resolution in the m range over a depth range that extends well beyond the depth-of-focus given by the numerical aperture of the imaging system.